ICU Medical Officers Handbook on Central Venous Catheterisation

Developed by:
Tim Spencer
Clinical Nurse Consultant
Central Venous Access & Parenteral Nutrition
Dept. of Intensive Care
Liverpool Hospital

Revised: 25/02/13
Aims

1. To assist medical officers to possess competencies in the insertion, care and management of patients with central venous catheters (CVC).
2. To enhance the medical officers knowledge and skills in the management of patients with a CVC.
3. To develop the medical officers skills in choosing the appropriate type of central venous catheter for the types of therapies required.
4. To perform central venous catheterisation utilising imaging technology to provide safe and efficient clinical practice with improved patient outcomes.

Objectives

At the end of the programme, it is anticipated that the medical officers should be better able to:

1. Differentiate between the types of catheters in terms of their characteristics and use.
2. Identify situations where the need for a CVC is indicated.
3. Compare and contrast the different sites of insertion of a CVC and its associated complications.
4. Identify the usage of the different lumens of a CVC.
5. Compare appropriate measurements to prevent complications associated with CVC’s.
6. Identify possible complications of a CVC in the hospitalised patient.
7. Utilise appropriate principles and guidelines in the care and maintenance of the CVC including the following:
 * Dressing techniques
 * Skin preparation/antiseptic solutions/maximal barrier precautions
 * Troubleshooting of problems during insertion
 * Infection control guidelines
 * Catheter removal
 * Documentation
Types of Catheters

Single Lumen Catheters (SLC) - can be capped and used for intermittent or continuous infusions of medication or fluids. CVC placement with a single lumen catheter is indicated when there is no peripheral venous access, when a viscous or hyperosmolar infusion is prescribed. This type of line may be used within the general or critical care setting or for long term access to a central vein for antibiotics or chemotherapy, where only one lumen is required – this helps reduce risk of infection by placing a device with less numbers of lumens.

Triple/Multi Lumen Catheters (TLC/MLC) - a MLC multiplies the advantages of a SLC. The number of lumens within a MLC may vary from 2 to 4 and allows for many treatments to be performed through one venous access site. Therapy may be intermittent or continuous. The multiple ports allow for the administration of medications, blood products, fluid replacement and venous sampling. Some catheters allow for monitoring and visualisation of cardiovascular anatomy. Also, the risk of infection increases with the more lumens available.

Peripherally Inserted Central Catheters (PICC) - are inserted in the arm using Ultrasound (US) via the basilic or cephalic vein and are advanced until the tip of the catheter is located in the Superior Vena Cava (SVC) or cavo-atrial junction. The catheter may contain 1 or 2 lumens and can be used to deliver continuous or intermittent therapy. PICC’s may be used in the general or critical care setting, but have been most popular as a long-term venous access for nutritional support, chemotherapy and antibiotic therapies. Like any central line, PICC placement is checked by an erect CXR.

Implantable Catheters - when there is a need for a prolonged therapy, the central venous catheter of choice are those that are implantable under the skin. The tunneled lines have 1 or 2 lumens and are sutured into a subcutaneous pocket on the chest or arm and constitute a completely closed system. Both catheter types may be used for the long-term infusions of antibiotics, TPN, chemotherapy, or other fluids and medications.
Indications for Central Venous Access

- Patients lacking useable peripheral venous access
- Patients requiring parenteral nutrition
- Patients receiving incompatible medications
- Patients requiring multiple infusions of fluids, medications, or chemotherapy
- Patients requiring a temporary access site for haemodialysis
- Patients receiving infusions that are hypertonic, hyperosmolar or infusions that have divergent pH values
- Patients who require critical care measures - inotropes, multiple therapies, etc.

Sites of Insertion

The insertion sites most frequently used are those listed in the tables below;

<table>
<thead>
<tr>
<th>Site</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Jugular</td>
<td>Large vessel, Easy to locate, Easy access, Short, straight path to the SVC (Right side), Low rate of complications</td>
<td>Uncomfortable for patient, Hard to maintain dressing, Close proximity to carotid artery, Highest infection rate of insertion sites, Problematic in patients with tracheostomies</td>
</tr>
<tr>
<td>Subclavian</td>
<td>Large vessel with high flow rate, Lower infection rate, Easy to dress and maintain Supra- or infraclavicular approaches, Less restricting for the patient</td>
<td>Lies close to the lung apex (pneumothorax risk), Close proximity to subclavian artery, Difficult to control bleeding (noncompressable vessel)</td>
</tr>
<tr>
<td>Femoral</td>
<td>Easy access, Large vessel, Advantageous during resuscitation</td>
<td>Decreased patient mobility, Increased rate of thrombosis, phlebitis and infection, Risk of femoral artery puncture, Dressing may be problematic</td>
</tr>
<tr>
<td>Basilic</td>
<td>Low incidence of thoracic complications, Direct route to the central venous system with arm at 90° angle</td>
<td>Increased incidence of phlebitis, Catheter tip movement related to patient arm movements</td>
</tr>
<tr>
<td>Cephalic</td>
<td>Easy access, Low incidence of thoracic complications</td>
<td>More tortuous than basilic vein, Increased incidence of phlebitis, May be compressed with the clavicle by anatomical positioning, Catheter tip movement related to patient arm movements</td>
</tr>
</tbody>
</table>
Figure 6.7. Cross-section of the neck. The direction of the fingers during palpation is perpendicular to the coronal plane. The direction of the catheter is parallel with the patient's sagittal plane. The catheter should not be directed medially and should not be advanced deeper than transverse process of the cervical vertebra. The safe puncture area is also indicated schematically by hatching. From Oda et al. (1981).

Figure 5.1. Anatomy of the subclavian vein.

Figure 8.1. Anatomy of the femoral vein.
IV Access Decision Tree

IV Access Needed

- Available peripheral IV access sites

Assessment Advantage

- Length and type of therapy

IV access needed
- Less than 1 week
 - Adequate access for site rotation
 - Short term Peripheral IV

- 1 to 4 weeks
 - Isotonic, Nonvesicant Normo-pH (< 600 mOsm/L pH 4-9)
 - Midline or extended dwell peripheral cannula

- 4 weeks to > 1 year
 - Hypertonic, Vesicant pH extremes (> 600 mOsm/L pH < 4 or > 9)
 - PICC

- Less than 3 weeks
 - Non-tunneled centrally inserted central catheter
 - Tunneled Catheter

- IV access < 12 mths
 - PICC

- Long term or chronic IV access needed
 - Consider Patient ADL
 - Implanted Venous Access Device (Ports)
Complications

It is estimated that approximately 10% of patients who have a central line placed will experience complications secondary to catheter insertion or use. Whether or not complications occur depends upon a number of factors including the experience of the inserting personnel, anatomical distortion at the potential insertion site, and the patients' condition. Each site used, e.g. subclavian v's internal jugular v's femoral, has certain risks involved due to the normal anatomy of that particular area. Other individual patient factors are also important, such as underlying disease, tolerance of Trendelenburg position, laboratory levels associated with bleeding, and the patients mental or emotional status.

The complications are generally divided into two groups, immediate or delayed, dependant upon the time they appear in relation to the catheter insertion.

Immediate complications are usually associated with catheter placement; however, some may develop later under certain circumstances. **Delayed** complications are usually manifested after the catheter has been indwelling for a period of time. Only the most frequently encountered complications will be included.

<table>
<thead>
<tr>
<th>Immediate</th>
<th>Delayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venous embolism</td>
<td>Catheter-related infections</td>
</tr>
<tr>
<td>Cardiac tamponade</td>
<td>Catheter-related thrombosis</td>
</tr>
<tr>
<td>Catheter embolus/rupture</td>
<td>Vessel erosion</td>
</tr>
<tr>
<td>Arterial puncture</td>
<td>Pneumothorax, haemothorax, hydrothorax</td>
</tr>
<tr>
<td>Cardiac arrhythmias</td>
<td>Catheter malposition</td>
</tr>
<tr>
<td>Nerve injury</td>
<td></td>
</tr>
<tr>
<td>Catheter malposition</td>
<td></td>
</tr>
<tr>
<td>Pneumothorax, haemothorax</td>
<td></td>
</tr>
</tbody>
</table>
All ICU doctors inserting CVCs must transduce the cannulating needle/cannula with a pressure transducer and confirm that there is NO arterial waveform prior to guidewire and dilator introduction into the vessel if ultrasound (US) is NOT used.

If unsure, call a Senior ICU Registrar or CNC/CNS for Central Venous Access.

Skin Preparation

Central venous catheters are invasive devices that predispose the patient to complications that are costly in financial terms as well as in patient morbidity and mortality. Methods used in the care and maintenance of the catheter during insertion and while indwelling can have a significant effect upon the incidence of catheter-related complications. It is vital that health care personnel be knowledgable and experienced in the care of central venous catheters, and that policies, procedures and protocols be based upon available scientific studies that support the methods chosen for that care.

Each time an insertion site is chosen for catheterisation, the surrounding area where the catheter entrance point and anchoring points should be treated with antiseptic solution (tinted Chlorhexidine 2% in 70% isopropyl alcohol). The purpose of using an antiseptic solution is to reduce the number of skin organisms at the insertion site. Chlorhexidine has more recently been shown to also be a more effective agent than Providone Iodine and, unlike others, promotes a longer residual antimicrobial effect after drying.

Defatting the skin- (non-standard practice)

The practice is under scrutiny due to patient discomfort and the loss of the proposed anti-microbial effects of the free fatty acids on the skin.

NB: Acetone, alcohol and ether have been shown to weaken polyurethane and silicone materials. Defatting the skin is not recommended.

If skin is dirty, clean the skin with soap and water prior to inserting the CVC/PICC.
Skin Preparation Guidelines

- cleanse the area around the catheter including the hub(s)
- cleansing should be performed using a circular motion moving in concentric circles from the site outwards (see diagram) - gentle pressure on the skin should be used.

![Diagram of catheter insertion site]

- Prepare an area the size greater than that of the final dressing (approx 12cm x 12cm).
- Use the antiseptic of choice **properly** to achieve the **maximum** benefits.
- An alcoholic chlorhexidine solution will dry slightly quicker, depending how much solution is used, but wait until solution is almost dry before starting procedure.

Dressings

The placement of a dressing over the catheter insertion site serves a number of purposes.
- It must be occlusive and water-repellent to protect the area from extrinsic contamination and to keep the site clean of any secretions or drainage from surrounding of anatomical sites.
• The dressing also helps to stabilise the catheter and aids in the protection of the catheter body close to the insertion site. Sterile supplies must be used to prevent the introduction of pathogenic microorganisms at the time the dressing is applied.

Catheter Securement

CVCs can be secured with a small stitch close to the insertion site to prevent pistoning at the site (movement of catheter body back and forth through the insertion site). This can often lead to site-related inflammation/infection. See picture below.

A Statlok is also placed on the suture/securement wing of the catheter. As shown below, it is placed away from the insertion site but still covered by the dressing (which helps stabilise the catheter also). Place a slight curve in the catheter body to reduce any tension that may cause movement at insertion site. The Steristrip must also be used to help secure the catheter (see images below)
L) Axillary CVC with large Biopatch

L) Basilic PICC with Biopatch
Maintaining Patency

When a catheter lumen is no longer used for continuous infusion, it can be capped and “locked” in preparation for intermittent or future use. To “lock” a catheter lumen a solution must be instilled to fill the entire space of the lumen and the injection cap. Theoretically, this prevents a backflow of blood that would cause clotting within the catheter.

A controversy still exists concerning which solution is appropriate; heparinised-saline or saline alone.

Heparinised saline has been primarily used due to the anti-thrombolytic properties of heparin. Heparin inhibits clot formation by inactivating thrombin and other coagulation factors. HITTS is mostly associated with continuous IV heparin infusion, but has also occurred with intermittent subcutaneous and lushing/locking administration. HITTS occurs in approximately 5-30% of persons receiving heparin.

Two clinical types of HITTS have been identified. One is a mild form characterised by a transient decrease in platelets that usually occurs around the second or third day of therapy. This is the most frequent presentation. The other type is believed to be an immune response to heparin and occurs 6 to 12 days after therapy is started. It is characterised by a severe decrease in platelets that may be accompanied by thrombosis, the result of platelet aggregation. The clots may form in arteries or veins and affect any portion of the body including organs. The clotting phase of the disease has also been called “white clot syndrome” due to the colour of the clots, which consist of platelets and fibrin.

Another aspect of the procedure that is not standardised is the frequency with which the IV device is flushed. A regime used frequently is to flush at the time of medication administration using the SASH method and at least every 8 hours or once per shift. The SASH method consists of a flush of saline, followed by the medication, another saline flush and finally, heparin to lock the device. This prevents the interaction of heparin with other medications. Without heparin an SAS regime is used.
Infection Control

Due to the threat of exposure to blood to health care workers during central venous catheterisation and certain aspects of catheter care, all involved personnel must comply with the safety measures provided by using Standard Precautions. Protective garb and needlestick prevention measures should be utilised based on the task and amount of blood exposure that is anticipated. Needle free systems and needle containment devices have been developed the further reduce personnel exposure to needles during the admixture and administration of injectable medications. Routine measures can be taken to reduce the risk of local and systemic catheter-related infections. They include;

- **Hand washing**
- **Site preparation**
- **Catheter stabilisation**
- **Inserter expertise**

Site evaluation

Minimal handling

Occlusive dressings

In addition, advances designed to provide additional protection against catheter-related infections have been made in IV technology e.g antiseptic-impregnated catheter materials, silver-impregnated collagen cuffs and antibiotic-coated catheters. The action of these products is directed toward preventing the migration of skin microorganisms down the catheter track.

The antiseptic surface consists of a combination of silver sulfadiazine and chlorhexidine that is impregnated into the polyurethane surface of the catheter. The agents act synergistically to prevent replication of microorganisms. The process
involves alteration of the cell wall of the organism by chlorhexidine, which then allows entry of the silver ions into the cell. The silver ions bind to the DNA helix and prevent the cell from replicating. Both agents are active against gram-positive and gram-negative bacteria as well as yeast. The agents are released slowly over a period of time, up to 15 days, after which the release is reduced significantly. By using a multiple lumen catheter made with an antiseptic surface, the benefits will include a longer catheter dwell time, decreased patient morbidity and mortality and cost effectiveness.

BIOPATCH – is a chlorhexidine-impregnated foam disc that is placed over the insertion site at catheter insertion, providing sustained CHG release for 7 days. The disk can hold up to 4 times its weight in fluid/blood and will continue to provide effective antiseptic action at the insertion site while insitu. There are 2 sizes. Below shows an image of a R) IJ Vascath secured with a large Biopatch insitu.
Catheter Removal

When a catheter is removed, precautions must be taken to prevent associated complications. During removal Universal Precautions must be employed to protect the healthcare worker from potential exposure to bloodborne pathogens. Aseptic technique must be used at the insertion site. To increase intra-thoracic pressure, the patient should be placed in the Trendelenburg position, if tolerated, or flat in bed and should be instructed to hold their breath or perform the Valsava manoeuvre. If the patient cannot cooperate with these instructions, the catheter should be removed during expiration.

After the catheter is removed pressure must be maintained with sterile gauze at the site until haemostasis is achieved. A totally air occlusive dressing must be applied over the insertion site to prevent an air embolism caused by air entering the body through the residual subcutaneous catheter track. The dressing must remain in place for approximately 24-72 hours depending on the length of time the catheter was indwelling.

During the time following the catheter removal the patient should be observed closely for signs and symptoms of complications, especially bleeding, air embolism or infection at the insertion site.

Documentation

The following information should be included in the patients clinical progress notes:

- Date of insertion,
- Inserter - Name, designation
- Anatomical location of catheter
- Documentation of non-arterial waveform/ABG analysis
- Inserted catheter depth according to catheter reference markings
- X-Ray confirmation of catheter tip location
- Site assessment, patient condition
- Complications during insertion
- Ongoing assessment documentation whilst catheter insitu
CVC/PICC insertion competency assessment

To be completed by all Registrars during ICU training.
Retain one copy and give a copy to Dr Parr.

Name:

<table>
<thead>
<tr>
<th>Method</th>
<th>Satisfactory assessment by:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Jugular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subclavian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femoral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

Liverpool Health Service General Nursing Policy and Procedure Manual, 1996,

Liverpool Health Service

BIOPATCH – Johnson & Johnson Best Practice Publication
COMPETENCY ASSESSMENT CHECKLIST – Central Venous Cannulation

The following criteria must be successfully achieved during assessment on **5 separate occasions** (exception: staff granted RPL are to complete only **2 assessments**). Unsuccessful attempts must also be recorded and assessed.

<table>
<thead>
<tr>
<th>Assessor’s Name: ___________________________</th>
<th>Criteria</th>
<th>Achieved ✓ or X (or n/a)</th>
<th>Re-assessment (if required) &/or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explains procedure to patient and obtains consent – if applicable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organises equipment (ensure sharps container available)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifies patient and performs timeout and safety checklist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checks for patient allergies – drugs, dressings, antiseptics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assesses and selects suitable vessel for cannulation with ultrasound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepares equipment and accessories for catheter insertion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position’s patient to maximise access to desired area of insertion i.e. Trendelenberg position if required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attaches monitoring (ECG or SpO₂) if available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applies personal protective equipment (PPE) (gloves, mask & eyewear or face shield) as per standard precautions policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washes hands using sterile hand-wash technique (2 mins)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepares skin area appropriately (with antiseptic solution)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drapes patient with full body sterile drapes to maximise sterile barrier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspects catheter and equipment to ensure it is not damaged/remains intact & checks that the guidewire mechanism is working</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush/prime each lumen with 0.9% normal saline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palpates anatomical landmarks correctly/ positions ultrasound probe and visualises the correct vessel to be cannulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correctly anaesthetises skin and deeper tissue with local anaesthetic under ultrasound guidance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inserts cannula/needle with bevel facing upwards, advancing slowly while maintaining slight negative pressure with syringe, ensuring visualisation of needle tip under ultrasound guidance at all times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Once accessed the vessel, stabilise needle and check for aspirate and then advance guidewire through needle to desired length – do not pull wire back through needle while insitu in patient. Remove needle once guidewire in place</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilates skin and vessel with vessel dilator – do not cut the skin with scalpel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inserts catheter over guidewire to desired or measured length whilst maintaining grip on guidewire at all times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removes guidewire & connects transducer line. Checks & acknowledges for NON-ARTERIAL waveform on monitor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secures catheter at insertion site appropriately and applies sterile transparent occlusive dressing to insertion site e.g. IV3000™ or Tegaderm. Date & time must be recorded on dressing at insertion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispose of all sharps material in sharps container</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removes drapes and accessories from patient/workspace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correctly dispose of general/contaminated waste materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove protective equipment and perform hand hygiene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document procedure in patients’ health care record on SMR.090.200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date: / /

<table>
<thead>
<tr>
<th>Assessor’s Name: ___________________________</th>
<th>Assessor’s Signature: ___________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Decision (Please Circle): Successful Unsuccessful</td>
<td></td>
</tr>
</tbody>
</table>
This triplicate copy form must be completed at insertion and filed in the patient’s clinical records as it is a mandatory Ministry of Health document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Patient Consent</th>
<th>Time Out</th>
<th>Coags</th>
<th>Pacemaker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Patient Consent</th>
<th>Time Out</th>
<th>Coags</th>
<th>Pacemaker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Central Venous Line Insertion Record

Date:
Time:
Date of Procedure:
Date of Removal:
Date of Infection Control:
Date of Culture:
Date of Isolation:

Facility:
Location:
Address:

Central Venous Line Insertion Record

Date: / /
Time:
Elective:
Emergency:
Rewiring:

Patient

Consent

Time Out

Coags

Pacemaker

ICU/HDU

OT

ED

Radiology

Other

Local

Sedation

GA

Monitoring

ECG

SpO2

BP

CO2

Asepsis

Hat, mask, protective eyewear

Hands washed 2 min

Sterile gloves and gown

Prep: alcoholic chlorhex/

Full sterile draping

Asepsis maintained throughout

Catheter

Right

Left

Subclavian

IJ

EL

Femoral

Basilic

Cephalic

Umbral

Long Saph

Lumens

CVC

PICC

Vascath

Other type / site

Brand

Coating: Antibiotic

Antiseptic

Gauge:
Catheter Length: cm

No. of passes:
Image Int

Ultrasound

Depth inserted from skin: cm

Venous placement confirmed:
Manometry

Ultrasound

Transducer

Other

Before Dilation

Guidewire removed intact:
Independently Confirmed:

Complications:
Nil

Art Puncture

Haemotoma

Pneumothorax

Re-position

Notes:

PICCs only:
Stiffener removed intact:
Independently Confirmed:
Mid-upper limb circumference: cm

Final Tip position:

Confirmed by:
CXR:
Image Int:
Name:
Pager:

Proceduralist:
Sign:
Pager:
Date:

Specialist / Fell / Reg / RMO / NP / RN

Assistance:
Sign:
Date:

Specialist / Fell / Reg / RMO / NP / RN / EN / Technician

Supervisor:
Sign:
Pager:
Date:

Specialist / Fell / Reg / RMO / NP / RN

Removal:
Date: / / 20

Authorised by:

Reason:

Local sepsis?: Yes No

Tip Cultured: Yes No

Removed By:
Sign:
Pager:
Date:

Specialist / Fell / Reg / RMO / NP / RN

CLAB Detected: Yes No

If Yes, date of positive blood culture: / / 20

Isolate:
TRAINING FRAMEWORK for clinicians
new to inserting CENTRAL LINES in NSW
BIOPATCH – How to apply

B.E.S.T. Practice means BIOPATCH™ Protective Disk Every Single Time.

How to apply BIOPATCH™:

1. Place BIOPATCH™ around catheter with blue side up and white foam side next to the patient's skin.
2. To ensure easy removal, place BIOPATCH™ so that the catheter rests on or near the radial slit. The edges of the slit must touch to ensure efficacy.
3. Secure catheter and BIOPATCH™ with transparent film dressing. Assure complete contact between skin and BIOPATCH™.

How to remove BIOPATCH™:

1. Lift corner of transparent film dressing and stretch away from catheter, holding catheter in place.
2. BIOPATCH™ will remain attached to transparent film dressing, making removal simultaneous.

Common Considerations:

- Apply BIOPATCH™ so that the pre-cut slit is oriented near or under the catheter, as shown.
- Make sure the edges of the slit meet, so that BIOPATCH™ has full contact with the skin. It needs 360° skin contact around the catheter for maximum efficacy.
- Don’t apply BIOPATCH™ with the slit straddling the catheter hub. The edges of the slit need to meet to maximize product performance.
- Don’t suture the catheter too close to the entry point—this will prevent proper placement of BIOPATCH™. Providing enough room for BIOPATCH™ will allow for proper skin antiseptic at each dressing change.

For additional information or technical support, call 1-877-384-4266 or visit our website at www.biopatch.com

To place an order, call 1-800-355-3500

<table>
<thead>
<tr>
<th>ORDER CODE</th>
<th>3150</th>
<th>3151</th>
<th>3152</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIX</td>
<td>1” disk (1.5cm)</td>
<td>3/4” disk (1.9cm)</td>
<td>1” disk (1.5cm)</td>
</tr>
<tr>
<td></td>
<td>with center hole</td>
<td>with center hole</td>
<td>with center hole</td>
</tr>
</tbody>
</table>

Note: Application requires intact patient skin or large, intact wound, and a suitable catheter (not to exceed 0.15” OD). BIOPATCH™ is not intended for children under 12 years of age. Not for use on burns, wounds with exposed bone, or in dermal wounds. The 1” disk (1.5cm) size is intended for use with catheters 3” or longer, the 3/4” disk (1.9cm) is intended for use with catheters 1” or longer, and the 1” disk (1.5cm) is intended for use with catheters 3/4” or longer.